INGRESS PROTECTION RATING (IP) Defined by IEC 605908 The resistive performance of fittings to solids and liquids is indicated by the IP (Ingress Protection) prefix followed by two numbers. The first number indicates the measure of protection against the ingress of solids. For instance: IP2X The second number indicates the measure of protection against the ingress of liquids. For instance: IPX5 #### Protection against the ingress of solid objects IP1X | Protection against the ingress of solid objects IP.1X | | | | | | |---|---------|--|--|---------------|--| | IP
No. | Example | Protection
against
contract
and ingress
of objects | Tests | Symbol | | | IP1X | 50 4 | Protected
against
solid objects
greater than
50mm ø | A large surface of the body,
such as a hand (but no
protection against
deliberate access). Solid
objects exceeding 50mm in ø | IP1X | | | IP2X | 125 | Protected
against
solid objects
greater than
12mm ø | Fingers or similar objects
not exceeding 80 mm
in length. Solid objects
exceeding 12mm in ø | IP2X | | | IP3X | 4 | Protected
against
solid objects
greater than
2.5mm ø | Tools, wires, etc, of diameter
or thickness greater than
2.5mm. Solid objects
exceeding 2.5mm in ø | ІРЗХ | | | IP4X | 4 | Protected
against
solid objects
greater than
1.0mm ø | Wires or strips of thickness
greater than 1.0mm. Solid
objects exceeding 1.0mm
in ø | IP4X | | | IP5X | 1 | Dust protected | Ingress of dust is not totally
prevented but dust does
not enter in sufficient
quantity to interfere with
satisfactory operation of the
equipment | * IP5X | | | IP6X | H | Dust tight | No ingress of dust | ♦ IP6X | | # IMPACT PROTECTION RATING (IK) Defined by UTE 20010 ### Degree of Impact Protection EN62262 IK rating system is an International classification showing degrees of protection provided by luminaires against external mechanical impacts. | Number | Measure of protection –
impact energy (joules) | Test | |--------|---|---------------| | IKOO | No protection to this standard | - | | IK01 | 0.15 | 0.20kg impact | | IK02 | 0.20 | 0.20kg impact | | IK03 | 0.35 | 0.20kg impact | | IK04 | 0.50 | 0.20kg impact | | IK05 | 0.70 | 0.20kg impact | | Protection against the ingress of solid objects IP.1X | | | | | | | |---|-----------|---|---|-------------|--|--| | IP
No. | Example | Protection
against
contract
and ingress
of objects | Tests | Symbol | | | | IPX1 | 4 | Protected
against
dripping
water | Dripping water (vertically
falling drops) shall have no
harmful effect | IPX1 | | | | IPX2 | 15 | Protected
against
dripping
water when
tilted up to
15° | Vertically dripping water
shall have no harmful effect
when the enclosure is tilted
at any angle up to 15° from
its normal position | IPX2 | | | | IPX3 | 600 | Protected
against
spraying
water | Water falling as a spray
at an angle up to 60° from
the vertical shall have no
harmful effect | IPX3 | | | | IPX4 | 4 | Protected
against
splashing
water | Water splashed against
the enclosure from any
direction hall have no
harmful effect | IPX4 | | | | IPX5 | Ø6.3 | Protected
against
water jets | Water projected by a nozzle
against the enclosure from
any direction shall have no
harmful effect | IPX5 | | | | IPX6 | 012.5 | Protected
against
heavy seas | Water from heavy seas or
water projected in powerful
jets shall not enter the
enclosure in harmful
quantities | IPX6 | | | | IPX7 | 1m 7 15cm | Protected
against
effects of
immersion | Ingress of water in a harmful quantity shall not be possible when the enclosure is immersed in water under defined conditions of pressure and time | å å | | | | IPX8 | F. 7 | Protected
against
submersion | The equipment is suitable for continuous submersion in water under conditions which shall be specified by the manufacturer. NOTE: Normally, this will mean that the equipment is hermetically sealed. However, with certain types of equipment, it can mean that water can enter but only in such a manner that it | å å
IPX8 | | | | Number | Measure of protection –
impact energy (joules) | Test | |--------|---|--------------------------| | IK06 | 1.00 | 0.50kg impact from 200mm | | IK07 | 2.00 | 0.50kg impact from 400mm | | IK08 | 5.00 | 1.70kg impact from 295mm | | IK09 | 10.00 | 5.00kg impact from 200mm | | IK10 | 20.00 | 5.00kg impact from 400mm | When higher impact energy protection is required 50 joules is recommended. produces no harmful effects # TABLE FOR CHEMICAL RESISTANCE The resistive performance of fittings to solids and liquids is indicated by the IP (Ingress Protection) prefix followed by two numbers. The first number indicates the measure of protection against the ingress of solids. For instance: IP2X The second number indicates the measure of protection against the ingress of liquids. For instance: IPX5 | Chemical material investigated | Aluminium | Fibreglass | Acrylic | Polycarbonate | Stainless steel | |--------------------------------|-----------|------------|----------|---------------|-----------------| | Accumulator Acid | • | • | • | | | | Acentic acid (up to) 5% | | • | • | • | • | | Acentic Acid (up to) 15% | A | • | • | • | • | | Acetone | • | A | A | A | • | | Alcohol (up to) 30% | | • | • | • | • | | Alcohol Concentrate | • | A | A | • | • | | Ammonia | | | | A | | | Ammonia 25% | • | | • | | • | | Aniline | • | A | A | A | • | | Aromatic Hydrocarbons | • | | • | • | • | | Benzene | • | A | A | | • | | Carbon Dioxide | • | • | • | • | • | | Carbon Monoxide | • | • | • | • | • | | Carbon Tetrachloride | | | | • | • | | Caustic Soda 2% | A | | • | A | • | | Caustic Soda 10% | A | A | • | A | • | | Chloroform | • | A | A | A | | | Common Salt | | • | • | | • | | Crude Oil | • | • | • | • | • | | Diesel Oil | • | • | • | | • | | Dioxane | | • | A | A | • | | Ether | • | | A | A | • | | Ethyl Acetate | • | A | A | • | • | | Glycerine | • | • | • | | • | | Glycol | • | • | • | • | • | | Hydrobomic | | | A | | | | Hydrobomic Acid | A | A | | | A | | Hydrocarbons | • | | | • | • | | Hydrochloric Acid 5% | A | • | • | • | A | | Hydrochloric Acid 30% | • | • | • | • | • | | Hydrochloric Acid 96% | A | • | • | • | A | | Hydrogen Peroxide 40% | | A | • | | • | | Chemical material investigated | Aluminium | Fibreglass | Acrylic | Polycarbonate | Stainless steel | |--------------------------------------|-----------|------------|----------|---------------|-----------------| | Hydrogen Peroxide (over) 40% | • | A | | A | • | | Hydrogen Sulphide | • | • | • | • | • | | Ketones | • | A | A | • | • | | Lysol | • | A | A | A | • | | Metal salts & their aqeous solutions | A | • | • | • | - | | Methanol | • | | A | • | • | | Methylene Chloride | | A | A | • | • | | Milk of lime | A | • | • | | • | | Nitric Acid 5% | A | • | • | • | • | | Nitric Acid 30% | A | | | | | | Nitric Acid concentrate | A | A | A | A | • | | Oils | | | | | | | Parafins | | | • | • | | | Petrol | • | • | • | • | • | | Petroleum Ether | • | | • | • | • | | Phenol | | A | A | • | • | | Phosphoric | | | A | | | | Pyridine | • | A | A | • | • | | Sea water | | • | • | • | • | | Soap suds | | • | • | • | • | | Soda | A | • | • | • | | | Sodium Hydroide | | | | • | | | Sulphuric Acid 5% | A | • | • | • | A | | Sulphuric Acid 30% | A | • | • | • | A | | Sulphuric Acid concentrate | A | A | A | | • | | Sulphurous Acid 5% | | | • | • | | | Synthetic detergent | A | • | • | • | • | | Turpentine | • | • | • | • | • | | Water (up to) 70°C | • | • | • | • | • | | Xylene | • | A | A | • | • | Due to continual development, information is subject to change without notification $% \left(1\right) =\left(1\right) \left(1$ #### Ambient temperature 20°C • Resistant | ■ Resistant within limits | ▲ Not resistant | • Resistant when saturated, resistant within limits when unsaturated